InSyTe FLECT/CT Publication List
1. Asya Levina et al ,Journal of Drug Delivery Science and Technology 75 (2022) 103612
In vivo hypotensive effect of aminosilanol-based nanocomposites bearing antisense oligonucleotides
https://doi.org/10.1016/j.jddst.2022.103612
2. Hak Soo Choi et al ,Biomaterials Research (2022) 26:51
P800SO3-PEG: a renal clearable bone-targeted fuorophore for theranostic imaging
https://doi.org/10.1186/s40824-022-00294-2
3. Yi Yang et al ,ACS Applied Materials & Interfaces 2022 14 (30), 34328-34341
Redox-Unlockable Nanoparticle-Based MST1 Delivery System to Attenuate Hepatic Steatosis via the
AMPK/SREBP-1c Signaling Axis
https://doi.org/10.1021/acsami.2c05889
4. Kang et al., Advanced Materials 2022; 34, 2106500
Tumor-Associated Immune-Cell-Mediated Tumor-Targeting Mechanism with NIR-II Fluorescence Imaging
https://doi.org/10.1002/adma.202106500
5. Sun et al., Advanced Science 2021, 8, 2102256
A Versatile Theranostic Platform for Colorectal Cancer Peritoneal Metastases: Real-Time Tumor-Tracking
and Photothermal-Enhanced Chemotherapy
https://doi.org/10.1002/advs.202102256
6. Jiang et al., Advanced Science 2021, 8, 2003706
Reversible Treatment of Pressure Overload-Induced Left Ventricular Hypertrophy through Drd5 Nucleic
Acid Delivery Mediated by Functional Polyaminoglycoside
https://doi.org/10.1002/advs.202003706
7. Popova et al., Biomedicines 2021; 9(74)
Rational Design of Albumin Theranostic Conjugates for Gold Nanoparticles Anticancer Drugs: Where the
Seed Meets the Soil?
https://doi.org/10.3390/biomedicines9010074
8. Li et al., Bioactive Materials 2021; 6:794-809
Cyanine conjugates in cancer theranostics
https://doi.org/10.1016/j.bioactmat.2020.09.009
9. Shi et al., Bioconjugate Chemistry 2020; 31(11):2576-2584
Multifunctional Transferrin Encapsulated GdF3 Nanoparticles for Sentinel Lymph Node and Tumor Imaging
https://doi.org/10.1021/acs.bioconjchem.0c00514
10. Li et al., Advanced Healthcare Materials 2020; e2001327
Cyanine Conjugate-Based Biomedical Imaging Probes
https://doi.org/10.1002/adhm.20200132711. Li et al., Hepatology International 2020
Exosomal miR- 199a- 5p promotes hepatic lipid accumulation by modulating MST1 expression and fatty
acid metabolism
https://doi.org/10.1007/s12072-020-10096-0
12. Wang et al., Journal of Materials Chemistry B, 2020; 8:6877-6885
Theranostics system caged in human serum albumin against breast tumor
https://doi.org/10.1039/D0TB00377H
13. Shi et al., ACS Omega 2019; 4:5310-5316
64Cu-Based Pretargeted Immuno-Positron Emission Tomography and Near-Infrared Fluorescence Imaging
of the Vascular Endothelial Growth Factor
https://doi.org/10.1021/acsomega.9b00158
14. Sun et al., Biomaterials 2019; 204:46-58
Pre-blocked molecular shuttle as an in-situ real-time theranostics
https://doi.org/10.1016/j.biomaterials.2019.02.019
15. Hu et al., Journal of Materials Chemistry B, 2018, 6:6122-6132
Targeted dual-mode imaging and phototherapy of tumors using ICG-loaded multifunctional MWCNTs as a
versatile platform
https://doi.org/10.1039/C8TB01870G
16. Sun et al., Biomaterials 2018; 183:268-279
A targeting theranostics nanomedicine as an alternative approach for hyperthermia perfusion
https://doi.org/10.1016/j.biomaterials.2018.04.016
17. Popova et al., Bioorganic & Medicinal Chemistry Letters 2018; 28(3):260-264
Biotin-decorated anti-cancer nucleotide theranostic conjugate of human serum albumin: Where the seed
meets the soil?
https://doi.org/10.1016/j.bmcl.2017.12.061
18. Lisitskiy et al., Bioorganic & Medicinal Chemistry Letters 2017; 27(16):3925-3930
Multifunctional human serum albumin-therapeutic nucleotide conjugate with redox and pH-sensitive drug
release mechanism for cancer theranostics
https://doi.org/10.1016/j.bmcl.2017.05.084
19. Yap et al., Theranostics 2017; 7(10):2565- 2574
Targeting activated platelets: a unique and potentially universal approach for cancer imaging
https://doi.org/10.7150/thno.19900
20. Lim et al., Theranostics 2017; 7(5):1047-1061
A unique recombinant fluoroprobe targeting activated platelets allows in vivo detection of arterial
thrombosis and pulmonary embolism using a novel three-dimensional fluorescence emission computed
tomography (FLECT) technology
https://doi.org/10.7150/thno.18099
21. Htun et al., Nature Communications 2017; 8(75):1-16
Near-infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for
high-risk atherosclerotic plaques
https://doi.org/10.1038/s41467-017-00138-x22. Guilleminault et al., Journal of Controlled Release 2014; 196:344-354
Fate of inhaled monoclonal antibodies after the deposition of aerosolized particles in the respiratory
system
https://doi.org/10.1016/j.jconrel.2014.10.003
CT only publications as of 02.13.2020
1. Yu et al., J. Cancer Letters 2020; 474:23-25
Disruption of the EGFR-SQSTM1 interaction by a stapled peptide suppresses lung cancer via activating
autophay and inhibiting EGFR signaling
https://doi.org/10.1016/j.canlet.2020.01.004
2. Zvejniece, et al., J. Neurotrama 2020; 37:295-304
Skull fractures induce neuroinflammation and worsen outcomes after closed head injury in mice
https://doi.org/10.1089/neu.2019.6524
3. Li et al., Animal Model Exp. Med. 2019; 2:291-296
Downregulation of HNRNPK in human cancer cells inhibits lung metastasis
https://doi.org/10.1002/ame2.12090
4. Bardakhanov et al., App. Acoustics 2018; 139:69-74
Hybrid sound-absorbing foam materials with nanostructured grit-impregnated pores
https://doi.org/10.1016/j.apacoust.2018.04.024
點擊下載應(yīng)用文獻.pdf